Non-Euclidean independent component analysis and Oja's learning

نویسندگان

  • Mandy Lange
  • Michael Biehl
  • Thomas Villmann
چکیده

In the present contribution we tackle the problem of nonlinear independent component analysis by non-Euclidean Hebbian-like learning. Independent component analysis (ICA) and blind source separation originally were introduced as tools for the linear unmixing of the signals to detect the underlying sources. Hebbian methods became very popular and succesfully in this context. Many nonlinear ICA extensions are known. A promising strategy is the application of kernel mapping. Kernel mapping realizes an usually nonlinear but implicite data mapping of the data into a reproducing kernel Hilbert space. After that a linear demixing can be carried out there. However, explicit handling in this non-Euclidean kernel mapping space is impossible. We show in this paper an alternative using an isomorphic mapping space. In particular, we show that the idea of Hebbian-like learning of kernel ICA can be transferred to this nonEuclidean space realizing an non-Euclidean ICA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of Oja's subspace algorithm for principal component extraction

Oja's principal subspace algorithm is a well-known and powerful technique for learning and tracking principal information in time series. A thorough investigation of the convergence property of Oja's algorithm is undertaken in this paper. The asymptotic convergence rates of the algorithm is discovered. The dependence of the algorithm on its initial weight matrix and the singularity of the data ...

متن کامل

Asymptotic distributions associated to Oja's learning equation for neural networks

In this paper, we perform a complete asymptotic performance analysis of the stochastic approximation algorithm (denoted subspace network learning algorithm) derived from Oja's learning equation, in the case where the learning rate is constant and a large number of patterns is available. This algorithm drives the connection weight matrix W to an orthonormal basis of a dominant invariant subspace...

متن کامل

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions

Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013